Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
2.
Int Immunopharmacol ; 131: 111834, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38493696

Pulmonary fibrosis is a chronic and progressively deteriorating lung condition that can be replicated in laboratory animals by administering bleomycin, a chemotherapeutic antibiotic known for its lung fibrosis-inducing side effects. L-arginine, a semi-essential amino acid, is recognized for its diverse biological functions, including its potential to counteract fibrosis. This study aimed to evaluate the antifibrotic properties of L-arginine on bleomycin-induced pulmonary fibrosis in rats. The administration of a single intratracheal dose of bleomycin resulted in visible and microscopic damage to lung tissues, an uptick in oxidative stress markers, and an elevation in inflammatory, apoptotic, and fibrotic indicators. A seven-day treatment with L-arginine post-bleomycin exposure markedly improved the gross and histological architecture of the lungs, prevented the rise of malondialdehyde and carbonyl content, and enhanced total antioxidant capacity alongside the activities of antioxidant enzymes. Also, L-arginine attenuated the expression of the pro-fibrotic factors, transforming growth factor-ß and lactate dehydrogenase in bronchoalveolar lavage fluid. In the lung tissue, L-arginine reduced collagen deposition, hydroxyproline concentration, and mucus production, along with decreasing expression of α-smooth muscle actin, tumor necrosis factor-α, caspase-3, matrix metalloproteinase-9, and ß-catenin. Moreover, it boosted levels of nitric oxide and upregulated the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), heme oxygenase-1 (HO-1), and E-cadherin and downregulating the expression of ß-catenin. These findings suggest that L-arginine has preventive activities against bleomycin-induced pulmonary fibrosis. This effect can be attributed to the increased production of nitric oxide, which modulates the HO-1/PPAR-γ/ß-catenin axis.


Pulmonary Fibrosis , Rats , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Bleomycin/adverse effects , Heme Oxygenase-1/metabolism , Antioxidants/pharmacology , beta Catenin/metabolism , PPAR gamma/metabolism , Nitric Oxide/metabolism , Lung/pathology , Fibrosis , Arginine/therapeutic use
3.
Biomed Pharmacother ; 168: 115757, 2023 Dec.
Article En | MEDLINE | ID: mdl-37897972

Costunolide (COST) is a sesquiterpene lactone that belongs to the germacranolide group, and occurs mainly in Saussurea lappa Clarke. Although COST inhibits the proliferation and metastasis of cancer cells and induces their apoptosis, it suffers poor water solubility and cellular permeability. Therefore, this study aimed to enhance the anti-proliferative activity of COST in LS174T colon cancer cells through its inclusion in bilosomal nanoformulation (COST-BILs). The optimized BIL formula contained cholesterol and Span-85 in a molar ratio of 1:5 as well as bile salt at a molar concentration of 0.5 mM, with entrapment efficiency of 63.4 ± 3.59 % and particle size of 119.7 ± 3.63 nm. The optimized COST-BILs showed a potent cytotoxic effect against LS174T cells with an IC50 of 6.20 µM; meanwhile, raw COST had an IC50 of 15.78 µM. Safety and relative selectivity were confirmed in the normal human colonic epithelial cells (HCoEpC). Cell cycle analysis indicated that both raw COST and COST-BILs significantly increased the fraction of LS174T cells in the sub-G1 phase. This was accompanied by a significant enhancement of early, late, and total apoptosis, as indicated by annexin-V staining. In addition, COST-BILs exhibited more potent activity in up-regulating CASP3, TP53, and BAX, and in down-regulating the expression of BCL2 mRNA as compared to raw COST. Further, the prepared formula enhanced the release of cytochrome C as well as the generation of reactive oxygen species (ROS) and reduced the integrity of mitochondrial membranes. In conclusion, the loading of COST on BILs significantly enhances its pro-apoptotic activity in LS174T cells.


Antineoplastic Agents , Colonic Neoplasms , Nanoparticles , Sesquiterpenes , Humans , Antineoplastic Agents/pharmacology , Sesquiterpenes/pharmacology , Apoptosis , Colonic Neoplasms/drug therapy , Cell Proliferation
4.
Saudi Pharm J ; 31(10): 101787, 2023 Oct.
Article En | MEDLINE | ID: mdl-37766820

Myocardial injury (MI) is an important pathological driver of mortality worldwide., and arises as a result of imbalances between myocardial oxygen demand and supply. In MI, oxidative stress often leads to inflammatory changes and apoptosis. Current therapies for MI are known to cause various adverse effects. Consequently, the development of new therapeutic agents with a reduced adverse event profile is necessary. In this regard, 2-methoxyestradiol (2ME), the metabolic end-product of oestradiol, possesses anti-inflammatory and antioxidant properties. The aim of this research is to assess the impact of 2ME on cardiac injury caused by isoproterenol (ISO) in rats. Animals were separated into six groups; controls, and those receiving 2ME (1 mg/kg), ISO (85 mg/kg), ISO + 2ME (0.25 mg/kg), ISO + 2ME (0.5 mg/kg), and ISO + 2ME (1 mg/kg). 2ME significantly attenuated ISO-induced changes in electrocardiographic changes and the cardiac histological pattern. This compound also decreased lactate dehydrogenase activity, creatine kinase myocardial band and troponin levels. The ability of 2ME to act as an antioxidant was shown by a decrease in malondialdehyde concentration, and the restoration of glutathione levels and superoxide dismutase activity. Additionally, 2ME antagonized inflammation and cardiac cell apoptosis, a process determined to be mediated, at least partially, by suppression of Gal-3/TLR4/MyD88/NF-κB signaling pathway. 2ME offers protection against acute ISO-induced MI in rats and offers a novel therapeutic management option.

5.
Pharmaceuticals (Basel) ; 16(7)2023 Jun 25.
Article En | MEDLINE | ID: mdl-37513837

Mucoadhesive nanosized crystalline aggregates (NCs) can be delivered by the gastrointestinal, nasal, or pulmonary route to improve retention at particular sites. Itopride hydrochloride (ITH) was selected as a drug candidate due to its absorption from the upper gastrointestinal tract. For drug localization and target-specific actions, mucoadhesive polymers are essential. The current work aimed to use second-generation mucoadhesive polymers (i.e., thiolated polymers) to enhance mucoadhesive characteristics. An ITH-NC formulation was enhanced using response surface methodology. Concentrations of Tween 80 and Polyvinyl pyrrolidone (PVP K-30) were selected as independent variables that could optimize the formulation to obtain the desired entrapment efficacy and particle size/diameter. It was found that a formulation prepared using Tween 80 at a concentration of 2.55% and PVP K-30 at 2% could accomplish the goals for which an optimized formulation was needed. Either xanthan gum (XG) or thiolated xanthan gum (TXG) was added to the optimized formulation to determine how they affected the mucoadhesive properties of the formulation. Studies demonstrated that there was an initial burst release of ITH from the ITH/NC/XG and ITH/NC/TXG in the early hours and then a steady release for 24 h. As anticipated, the TXG formulation had a better mucin interaction, and this was needed to ensure that the drug was distributed to tissues that produce mucus. Finally, at the measured concentrations, the ITH/NC showed minimal cytotoxicity against lung cells, indicating that it may have potential for additional in vivo research. The enhanced bioavailability and mean residence time of the designed mucoadhesive NC formulations were confirmed by pharmacokinetic studies.

6.
Mar Pollut Bull ; 194(Pt A): 115224, 2023 Sep.
Article En | MEDLINE | ID: mdl-37454473

Lake Ichkeul is considered one of the most significant wetlands in the Mediterranean basin. It serves as a crucial wintering area for numerous western Palearctic birds. A notable decline in species diversity has been observed in the past decade, attributed to excessive water usage for irrigation and the effects of climate change. This study aimed to assess the status of Ichkeul Lake and its catchment through identifying potentially toxic cyanobacteria, and sediment quality. Our first striking finding was that Lyngbya majuscula the dominant potentially toxic cyanobacterium in the lake originated from the Tinja channel. Trace element concentrations in lake sediments exceeded SQG standards which is indicative of rare detrimental effects to biological life. However, the sediment in front of the Tinja channel exhibited high contamination levels of Zn and Cd. These findings call for an urgent need to ensure the ongoing management and conservation of this world heritage site.


Cyanobacteria , Metals, Heavy , Trace Elements , Water Pollutants, Chemical , Lakes , Geologic Sediments , Metals , Trace Elements/analysis , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring
7.
Biomol Biomed ; 23(6): 1069-1078, 2023 Nov 03.
Article En | MEDLINE | ID: mdl-37212036

Metabolic syndrome (MetS) is a combination of metabolic disorders that can predispose individuals to benign prostatic hyperplasia (BPH). The inhibition of the cannabinoid 1 (CB1) receptor has been used to treat metabolic disorders in animal models. This study reports the use of a peripherally restricted CB1 antagonist (AM6545) and a neutral CB1 antagonist (AM4113) to improve MetS-related BPH in rats. Animals were divided into three control groups to receive either a normal rodent diet, AM6545, or AM4113. MetS was induced in the fourth, fifth, and sixth groups using a concentrated fructose solution and high-salt diet delivered as food pellets for eight weeks. The fifth and sixth groups were further given AM6545 or AM4113 for additional four weeks. Body and prostate weights were measured and prostate sections were stained with hematoxylin eosin. Cyclin D1, markers of oxidative stress and inflammation, and levels of the endocannabinoids were recorded. BPH in rats with MetS was confirmed through increased prostate weight and index, as well as histopathology. Treatment with either AM6545 or AM4113 significantly decreased prostate weight, improved prostate histology, and reduced cyclin D1 expression compared with the MetS group. Groups treated with CB1 antagonists experienced reduced lipid peroxidation, recovered glutathione depletion, restored catalase activity, and had lower inflammatory markers interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α). MetS rats treated with either AM6545 or AM4113 showed reduced concentrations of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in the prostate compared with the MetS group. In conclusion, the CB1 antagonists AM6545 and AM4113 protect against MetS-induced BPH through their anti-proliferative, antioxidant, and anti-inflammatory effects.


Metabolic Syndrome , Prostatic Hyperplasia , Male , Humans , Rats , Animals , Cannabinoid Receptor Antagonists/pharmacology , Cyclin D1 , Receptor, Cannabinoid, CB1 , Piperidines/pharmacology
8.
Drug Deliv ; 30(1): 2174209, 2023 Dec.
Article En | MEDLINE | ID: mdl-36762548

Andrographolide (AG), a major active constituent of Andrographis paniculata, is known to hinder proliferation of several types of cancer cells. However, its poor solubility and cellular permeability restrict its use in clinical applications. In this study, AG-loaded phytosomes (AG-PTMs) were formulated and optimized with respect to particle size using l-α-phosphatidylcholine (PC):AG ratio and sonication time (ST) as independent variables. The optimized formula was prepared at 1:2.7 for AG:PC molar ratio and 4.9 min for ST and exhibited a particle size of 243.7 ± 7.3 nm, polydispersity index (PDI) of 0.310 and entrapment efficiency of 72.20 ± 4.53. Also, the prepared formula showed a slow release of AG over 24-h period. The antiproliferative activity of AG-PTMs was investigated against the liver cancer cell line HepG2. AG-PTMs significantly repressed the growth of HepG2 cells with an IC50 value of 4.02 ± 0.14 µM. AG uptake by HepG2 cells was significantly enhanced in incubations containing the optimized formula. AG-PTMs also caused G2-M cell cycle phase arrest and increased the fraction of apoptotic cells in pre-G1 phase. These effects were associated with induction of oxidative stress and mitochondrial dysfunction. In addition, AG-PTMs significantly upregulated mRNA expression of BAX and downregulated that of BCL2. Furthermore, AG-PTMs significantly enhanced the concentration of caspase-3 in comparison to raw AG. These data indicate that the phytosomal delivery of AG significantly inhibited HepG2 cell proliferation through enhanced cellular uptake, arresting cell cycle at the G2-M phase and inducing mitochondrial-dependent apoptosis.


Diterpenes , Liver Neoplasms , Humans , Hep G2 Cells , Cell Proliferation , Diterpenes/pharmacology , Apoptosis , G2 Phase Cell Cycle Checkpoints , Liver Neoplasms/drug therapy
9.
J Pers Med ; 12(12)2022 Dec 02.
Article En | MEDLINE | ID: mdl-36556219

In clinical trials of cancer drugs, grouping by age is a very common grouping method, as it can allow for a visual comparison of the different pharmaceutical responses in patients at different age stages. Under the guidance of this thinking, many researchers use age grouping when studying clinical cancer drugs. However, even people at the same age may be at different stages in their lives, such as individuals who are going through puberty, menopause/andropause, or intermediate transition, as well as childhood and old age, affected by factors such as hormone levels, immune responses, ethnic groups, and regions. Every individual has different cancer symptoms and responses to drugs; therefore, the experimental effect of life stage grouping will be more obvious and clearer. Not only does this conclusion apply to cancer drugs, but it also applies to clinical trials for other diseases. In addition, this does not mean that age grouping should be completely abandoned. Life stage is a more general interval that can be further divided into life stage groups according to the age of the patients. Based on the principal law of lifespan (PLOSP), age trends in life stages also need to be updated from time to time. To date, life stage grouping has not been discussed systematically and has not been used as a grouping method for cancer patients. In this paper, life stage grouping is discussed as one of the important grouping categories in cancer clinical trials.

10.
Polymers (Basel) ; 14(23)2022 Nov 28.
Article En | MEDLINE | ID: mdl-36501579

In oral administration systems, mucoadhesive polymers are crucial for drug localization and target-specific activities. The current work focuses on the application of thiolated xanthan gum (TXG) to develop and characterize a novel mucoadhesive nanocrystal (NC) system of simvastatin (SIM). Preparation of SIM-NC was optimized using response surface methodology (RSM) coupled with statistical applications. The concentration of Pluronic F-127 and vacuum pressure were optimized by central composite design. Based on this desirable approach, the prerequisites of the optimum formulation can be achieved by a formulation having 92.568 mg of F-127 and 77.85 mbar vacuum pressure to result in EE of 88.8747% and PS of 0.137.835 nm. An optimized formulation was prepared with the above conditions along with xanthan gum (XG) and TXG and various parameters were evaluated. A formulation containing TXG showed 98.25% of SIM at the end of 96 h. Regarding the mucoadhesion potential evaluated by measuring zeta potential, TXG-SIM-NC shoed the maximum zeta potential of 16,455.8 ± 869 mV at the end of 6 h. The cell viability percentage of TXG-SIM-NC (52.54 ± 3.4% with concentration of 50 µg/mL) was less than the plain SIM, with XG-SIM-NC showing the highest cytotoxicity on HSC-3 cells. In vivo pharmacokinetic studies confirm the enhanced bioavailability of formulated mucoadhesive systems of SIM-NC, with TXG-SIM-NC exhibiting the maximum.

11.
Plants (Basel) ; 11(19)2022 Oct 03.
Article En | MEDLINE | ID: mdl-36235468

INTRODUCTION: Benign prostatic hyperplasia (BPH) is a common disease among elderly men. Its pharmacological treatment is still unsatisfactory. 6-Paradol (6-PD) is an active metabolite found in many members of the Zingiberaceae family. It was reported to possess anti-proliferative, antioxidant, and anti-inflammatory activities. The present study aimed at exploring the potential of 6-PD to inhibit testosterone-induced BPH in rats as well as the probable underlying mechanism. METHODS: Male Wistar rats were divided into 6 groups and treated as follows: Group 1 (control group) received vehicles only, Group 2 testosterone only, Groups 3 and 4 received 6-PD (2.5 and 5.0 mg/kg; respectively) and testosterone, and Group 6 received finasteride and testosterone. RESULTS: Daily treatment of animals with 6-PD at the two dose levels of 2.5 and 5 mg/kg significantly ameliorated a testosterone-induced rise in prostate index and weight. This was confirmed by histological examinations of prostatic tissues that indicated a reduction in the pathological changes as well as inhibition of the rise in glandular epithelial height in 6-PD treated rats. Immunohistochemical investigations showed that 6-PD prevented the up-regulation of cyclin D1 induced by testosterone injections. Further, 6-PD significantly modulated mRNA expression of both Bcl2 and Bax in prostate tissues of testosterone-treated rats in favor of anti-proliferation. It also showed antioxidant activities as evidenced by inhibition of accumulation of malondialdehyde (MDA) and exhaustion of catalase (CAT) activity. In addition, 6-PD displayed significant anti-inflammatory activities as it prevented up-regulation of interleukin-6 (IL-6) and nuclear factor kappa B (NF-κB). Immunoblotting analysis revealed that 6-PD significantly inhibited testosterone-induced activation of AKT and mTOR in prostate tissues. CONCLUSIONS: 6-PD protects against testosterone-induced BPH in rats. This can be attributed, at least partly, to its antiproliferative, antioxidant, and anti-inflammatory properties as well as its ability to inhibit activation of the AKT/mTOR axis.

12.
Antioxidants (Basel) ; 11(8)2022 Jul 30.
Article En | MEDLINE | ID: mdl-36009218

The immunosuppressant cyclosporine A (CSA) has been linked to serious renal toxic effects. Although 2-methoxyestradiol (2ME) possesses a wide range of pharmacological abilities, it suffers poor bioavailability after oral administration. The purpose of this study was to evaluate the potential of 2ME loaded D-ɑ-tocopheryl polyethylene glycol succinate (TPGS) micelles to prevent CSA-induced nephrotoxicity in rats. A 2ME-TPGS was prepared and showed particle size of 44.3 ± 3.5 nm with good entrapment efficiency and spherical structures. Male Wistar rats were divided into 5 groups, namely: Control, Vehicle, CSA, CSA + 2ME-Raw, and CSA + 2ME-Nano. CSA was injected daily at a SC dose of 20 mg/kg. Both 2ME-Raw and 2ME-Nano were given daily at oral doses of 5 mg/kg. Treatments continued for three successive weeks. 2ME-TPGS exerted significant protective effects against CSA nephrotoxicity. This was evidenced in ameliorating deterioration of renal functions, attenuation of pathological changes in kidney tissues, exerting significant anti-fibrotic, antioxidant, and anti-inflammatory effects together with significant anti-apoptotic effects. Western blot analyses showed both 2ME-Raw and 2ME-Nano significantly inhibited protein expression of TGF-ß1 and phospho-ERK (p-ERK). It was observed that 2ME-TPGS, in almost all experiments, exerted superior protective effects as compared with 2ME-Raw. In conclusion, 2ME loaded in a TPGS nanocarrier possesses significant protective activities against CSA-induced kidney injury in rats. This is attributable to 2ME anti-fibrotic, antioxidant, anti-inflammatory, and anti-apoptotic activities which are mediated at least partly by inhibition of TGF-ß1/p-ERK axis.

13.
Pharmaceutics ; 14(8)2022 Aug 08.
Article En | MEDLINE | ID: mdl-36015278

Benign prostatic hyperplasia (BPH) is a disease that commonly affects elderly men. Cordycepin is an adenosine analog with a wide range of pharmacological activities including antiproliferative and prostatic smooth muscle relaxant effects. This study was designed to assess the actions of cordycepin in testosterone-induced BPH in rats. Animals were divided into six treatment groups: control, cordycepin-alone (10 mg/kg), testosterone-alone (3 mg/kg), cordycepin (5 mg/kg) + testosterone, cordycepin (10 mg/kg) + testosterone, and finasteride (0.5 mg/kg) + testosterone. Treatments were continued daily, 5 days a week, for 4 weeks. Cordycepin significantly prevented the increase in prostate weight and prostate index induced by testosterone. This was confirmed by histopathological examinations. Cordycepin antiproliferative activity was further defined by its ability to inhibit cyclin-D1 and proliferating cell nuclear antigen (PCNA) expression. In addition, cordycepin exhibited significant antioxidant properties as proven by the prevention of lipid peroxidation, reduced glutathione diminution, and superoxide dismutase exhaustion. This was paralleled by anti-inflammatory activity as shown by the inhibition of interleukin-6, tumor necrosis factor-α, and nuclear factor-κB expression in prostatic tissues. It also enhanced apoptosis as demonstrated by its ability to enhance and inhibit mRNA expression of Bax and Bcl2, respectively. Western blot analysis indicated that cordycepin augmented phospho-AMP-activated protein kinase (p-AMPK) and inhibited p-AKT expression. Collectively, cordycepin has the ability to prevent testosterone-induced BPH in rats. This is mediated, at least partially, by its antiproliferative, antioxidant, anti-inflammatory, and pro-apoptotic actions in addition to its modulation of AMPK and AKT activation.

14.
Pharmaceuticals (Basel) ; 15(7)2022 Jun 23.
Article En | MEDLINE | ID: mdl-35890080

The clinical value of colistin, a polymyxin antibiotic, is limited by its nephrotoxicity. Omeprazole is a commonly prescribed proton pump inhibitor. The current study aimed to evaluate the effects of the concomitant administration of omeprazole on colistin-induced nephrotoxicity in rats. Omeprazole significantly ameliorated colistin nephrotoxicity as evidenced by prevention in the rise in the serum level of creatinine, urea and cystactin C as well as urinary N-acetylglucosamine activity. This was confirmed by histological studies that indicated a decreased incidence of interstitial nephritis, degenerative cortical changes and collagen deposition. This was accompanied by the prevention of oxidative stress as omeprazole significantly inhibited the lipid peroxidation, glutathione depletion and enzymatic exhaustion of superoxide dismutase as well as catalase. Additionally, omeprazole inhibited the expression of interleukin-6 and tumor necrosis factor-α. Further, omeprazole inhibited the colistin-induced rise in Bax and the down-regulation of Bcl2 mRNA expression. An assessment of the serum levels of colistin revealed that omeprazole had no significant impact. However, it was observed that omeprazole significantly inhibited the accumulation of colistin in kidney tissues. In conclusion, omeprazole protects against colistin-induced nephrotoxicity. This can be attributed to, at least partly, omeprazole's anti-oxidant, anti-inflammatory and anti-apoptotic activities in addition to its ability to prevent the toxic accumulation of colistin in kidneys.

15.
Polymers (Basel) ; 14(9)2022 May 07.
Article En | MEDLINE | ID: mdl-35567079

The healing of a burn wound is a complex process that includes the re-formation of injured tissues and the control of infection to minimize discomfort, scarring, and inconvenience. The current investigation's objective was to develop and optimize a geranium oil-based self-nanoemulsifying drug delivery system loaded with pravastatin (Gr-PV-NE). The geranium oil and pravastatin were both used due to their valuable anti-inflammatory and antibacterial activities. The Box-Behnken design was chosen for the development and optimization of the Gr-PV-NE. The fabricated formulations were assessed for their droplet size and their effects on the burn wound diameter in experimental animals. Further, the optimal formulation was examined for its wound healing properties, antimicrobial activities, and ex-vivo permeation characteristics. The produced nanoemulsion had a droplet size of 61 to 138 nm. The experimental design affirmed the important synergistic influence of the geranium oil and pravastatin for the healing of burn wounds; it showed enhanced wound closure and improved anti-inflammatory and antimicrobial actions. The optimal formulation led to a 4-fold decrease in the mean burn wound diameter, a 3.81-fold lowering of the interleukin-6 serum level compared to negative control, a 4-fold increase in the inhibition zone against Staphylococcus aureus compared to NE with Gr oil, and a 7.6-fold increase in the skin permeation of pravastatin compared to PV dispersion. Therefore, the devised nanoemulsions containing the combination of geranium oil and pravastatin could be considered a fruitful paradigm for the treatment of severe burn wounds.

16.
Gels ; 8(3)2022 Mar 12.
Article En | MEDLINE | ID: mdl-35323289

Tongue cancer is one of the most common carcinomas of the head and neck region. The antitumor activities of statins, including lovastatin (LV), and the essential oil of eucalyptus (Eu oil), have been adequately reported. The aim of this study was to develop a nanoemulgel containing LV combined with Eu oil that could then be made into a nanoemulsion and assessed to determine its cytotoxicity against the cell line human chondrosarcoma-3 (HSC3) of carcinoma of the tongue. An I-optimal coordinate-exchange quadratic mixture design was adopted to optimize the investigated nanoemulsions. The droplet size and stability index of the developed formulations were measured to show characteristics of the nanoemulsions. The optimized LV loaded self-nanoemulsifying drug delivery system (LV-Eu-SNEDDS) was loaded into the gelling agent Carbopol 934 to develop the nanoemulgel and evaluated for its rheological properties. The cytotoxic efficiency of the optimized LV-Eu-SNEDDS loaded nanoemulgel was tested for cell viability, and the caspase-3 enzyme test was used against the HSC3 cell line of squamous carcinoma of the tongue. The optimized nanoemulsion had a droplet size of 85 nm and a stability index of 93%. The manufactured nanoemulgel loaded with the optimum LV-Eu-SNEDDS exhibited pseudoplastic flow with thixotropic behavior. The developed optimum LV-Eu-SNEDDS-loaded nanoemulgel had the best half-maximal inhibitory concentration (IC50) and caspase-3 enzyme values of the formulations developed for this study, and these features improved the ability of the nanoemulsion-loaded gel to deliver the drug to the investigated target cells. In addition, the in vitro cell viability studies revealed the synergistic effect between LV and Eu oil in the treatment of tongue cancer. These findings illustrated that the LV-Eu-SNEDDS-loaded gel formulation could be beneficial in the local treatment of tongue cancer.

17.
Gels ; 8(3)2022 Mar 19.
Article En | MEDLINE | ID: mdl-35323302

The aim of the study was to develop and evaluate the Ginkgo biloba nanocomplex gel (GKNG) as a long-acting formulation for the wound healing potential. Pharmaceutical analysis showed an average particle size of 450.14 ± 36.06 nm for GKNG, zeta potential +0.012 ± 0.003 mV, and encapsulation efficiency 91 ± 1.8%. The rheological analysis also showed the optimum diffusion rate and viscosity needed for topical drug delivery. Fourier transform infrared spectroscopy (FTIR), powder X-ray diffractometry (PXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analysis further confirmed the success of GKNG. The in vivo study showed increments in the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) and a lower level of lipid peroxidation (MDA) after GKNG treatment. The GKNG group showed upregulations in collagen type I, as alpha 1 collagen (COL1A1), and collagen type IV, as alpha 1 collagen (COL4A1). Furthermore, the in vivo study showed increments in hydroxyproline, epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), and transforming growth factor-beta 1 (TGF-ß1) after the GKNG. Additionally, GKNG effectively increased the wound contraction compared to GK gel and sodium alginate (SA) gel. Based on the in vitro and in vivo evaluation, GKNG effectively accelerated wound healing by modulation of antioxidant enzymes, collagens, angiogenic factors, and TGF-ß1.

18.
Nutrients ; 14(4)2022 Feb 09.
Article En | MEDLINE | ID: mdl-35215383

Doxorubicin (DOX), a commonly utilized anthracycline antibiotic, suffers deleterious side effects such as cardiotoxicity. Mokko lactone (ML) is a naturally occurring guainolide sesquiterpene with established antioxidant and anti-inflammatory actions. This study aimed at investigating the protective effects of ML in a DOX-induced cardiotoxicity model in rats. Our results indicated that ML exerted protection against cardiotoxicity induced by DOX as indicated by ameliorating the rise in serum troponin and creatine kinase-MB levels and lactate dehydrogenase activity. Histological assessment showed that ML provided protection against pathological alterations in heart architecture. Furthermore, treatment with ML significantly ameliorated DOX-induced accumulation of malondialdehyde and protein carbonyl, depletion of glutathione, and exhaustion of superoxide dismutase and catalase. ML's antioxidant effects were accompanied by increased nuclear translocation of NF-E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression. Moreover, ML exhibited significant anti-inflammatory activities as evidenced by lowered nuclear factor κB, interleukin-6, and tumor necrosis factor-α expression. ML also caused significant antiapoptotic actions manifested by modulation in mRNA expression of Bax, Bcl-2, and caspase-3. This suggests that ML prevents heart injury induced by DOX via its antioxidant, anti-inflammatory, and antiapoptotic activities.


Cardiotoxicity , Sesquiterpenes , 4-Butyrolactone/analogs & derivatives , Animals , Anti-Inflammatory Agents/therapeutic use , Antioxidants/metabolism , Apoptosis , Cardiotoxicity/prevention & control , Doxorubicin/toxicity , Myocardium/metabolism , Oxidative Stress , Rats , Sesquiterpenes/therapeutic use
19.
Drug Deliv ; 29(1): 284-293, 2022 Dec.
Article En | MEDLINE | ID: mdl-35019794

Alopecia areata is a skin disorder characterized by scarless, localized hair loss that is usually managed by topical treatments that might further worsen the condition. Therefore, the current study aimed to develop nano-cubosomes loaded with finasteride (FI) and oregano oil (Or) to improve drug solubility and permeation through skin and then incorporate it into an aloe ferox gel base. An l-optimal coordinate exchange design was adopted to optimize nano-cubosomes. Phytantriol and Alkyl Acrylate were employed as the lipid material, and surfactant respectively for cubosomes manufacture. The produced formulations were assessed for their particle size, entrapment efficiency (EE%), FI steady-state flux (Jss) and minimum inhibitory concentration (MIC) against Pro-pionibacterium acnes. Optimal FI-Or-NCu had a particle size of 135 nm, EE% equals 70%, Jss of 1.85 µg/cm2.h, and MIC of 0.44 µg/ml. The optimum formulation loaded gel gained the highest drug release percent and ex vivo skin permeation compared to FI aqueous suspension, and pure FI loaded gel. Aloe ferox and oregano oil in the optimized gel formulation had a synergistic activity on the FI permeation across the skin and against the growth of p. acne bacteria which could favor their use in treating alopecia. Thus, this investigation affirms the ability of FI-Or-NCu loaded aloe ferox gel could be an effective strategy that would enhance FI release and permeation through skin and maximize its favorable effects in treating alopecia.


Aloe/chemistry , Alopecia/pathology , Finasteride/pharmacology , Nanoparticle Drug Delivery System/chemistry , Origanum/chemistry , Administration, Cutaneous , Animals , Chemistry, Pharmaceutical , Drug Carriers/chemistry , Drug Liberation , Fatty Alcohols/chemistry , Finasteride/administration & dosage , Male , Microbial Sensitivity Tests , Particle Size , Rats , Rats, Wistar , Skin Absorption , Solubility , Surface Properties
20.
Gels ; 7(4)2021 Nov 30.
Article En | MEDLINE | ID: mdl-34940303

This study aimed to develop gastro-retentive sustained-release ambroxol (ABX) nanosuspensions utilizing ambroxol-kappa-carrageenan (ABX-CRGK) complexation formulations. The complex was characterized by differential scanning calorimetry, powder x-ray diffractometer, and scanning electron microscopy. The prepared co-precipitate complex was used for the development of the sustained-release formulation to overcome the high metabolic and poor solubility problems associated with ABX. Furthermore, the co-precipitate complex was formulated as a suspension in an aqueous floating gel-forming vehicle of sodium alginate with chitosan, which might be beneficial for targeting the stomach as a good absorption site for ABX. The suspension exhibited rapid floating gel behaviour for more than 8 h, thus confirming the gastro-retentive effects. Particle size analysis revealed that the optimum nanosuspension (ABX-NS) had a mean particle size of 332.3 nm. Afterward, the ABX released by the nanoparticles would be distributed to the pulmonary tissue as previously described. Based on extensive pulmonary distribution, the developed nanosuspension-released ABX nanoparticles showed significant cytotoxic enhancement compared to free ABX in A549 lung cancer cells. However, a significant loss of mitochondrial membrane potential (MMP) also occurred. The level of caspase-3 was the highest in the ABX-NS-released particle-treated samples, with a value of 416.6 ± 9.11 pg/mL. Meanwhile, the levels of nuclear factor kappa beta, interleukins 6 and 1 beta, and tumour necrosis alpha (NF-kB, IL-6, IL-1ß, and TNF-α, respectively) were lower for ABX-NS compared to free ABX (p < 0.05). In caspase-3, Bax, and p53, levels significantly increased in the presence of ABX-NS compared to free ABX. Overall, ABX-NS produced an enhancement of the anticancer effects of ABX on the A549 cells, and the developed sustained-release gel was successful in providing a gastro-retentive effect.

...